Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
2.
Clin Pharmacol Ther ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38493367

RESUMO

Pediatric drug dosing is challenged by the heterogeneity of developing physiology and ethical considerations surrounding a vulnerable population. Often, pediatric drug dosing leverages findings from the adult population; however, recent regulatory efforts have motivated drug sponsors to pursue pediatric-specific programs to meet an unmet medical need and improve pediatric drug labeling. This paradigm is further complicated by the pathophysiological implications of obesity on drug distribution and metabolism and the roles that body composition and body size play in drug dosing. Therefore, we sought to understand the landscape of pediatric drug dosing by characterizing the dosing strategies from drug products recently approved for pediatric indications identified using FDA Drug Databases and analyze the impact of body size descriptors (age, body surface area, weight) on drug pharmacokinetics for several selected antipsychotics approved in pediatric patients. Our review of these pediatric databases revealed a dependence on body size-guided dosing, with 68% of dosing in pediatric drug labelings being dependent on knowing either the age, body surface area, or weight of the patient to guide dosing for pediatric patients. This dependence on body size-guided dosing drives the need for special consideration when dosing a drug in overweight and obese patients. Exploratory pharmacokinetic analyses in antipsychotics illustrate possible effects of drug exposure when applying different dosing strategies for this class of drugs. Future efforts should aim to further understand the pediatric drug dosing and obesity paradigm across pediatric age ranges and drug classes to optimize drug development and clinical care for this patient population.

3.
J Clin Pharmacol ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294346

RESUMO

Food effect (FE) studies characterize food-drug interactions that may alter the efficacy or safety of a drug, but these studies are not conducted in pediatric patients. Pediatric patients have substantial physiologic, anatomic, and dietary differences from adults, which may result in differences in their FE considerations. Therefore, the objective of this study was to identify oral drug products approved for use in pediatric patients aged <6 years with an FE observed in adults. Additional objectives were to summarize the therapeutic areas, pharmacokinetic effects, and labeling instructions that resulted from these studies. Publicly available data were searched for products studied in pediatric patients and approved for use by the United States Food and Drug Administration (FDA) from 2012 to 2022. Of the 102 oral drug products approved for use in patients aged <6 years, 43 recommended the consideration of food intake in the drug labeling. These included drug products recommended to be taken with food (n = 21, 49%) or without food (n = 14, 33%). Each of the 14 drug products recommended to be taken without food are approved for use in pediatric patients aged <2 years. The products approved for use in pediatric patients aged <2 years comprised the highest proportion with area under the plasma concentration-time curve extrapolated to infinity (AUCinf , n = 35, 75%) and maximum serum concentration (Cmax , n = 45, 80%) affected by food. Close monitoring is warranted during the postapproval period for products identified as having a significant FE in adults and that are approved for use in pediatric patients aged <6 years. Promising tools for predicting pediatric FE may include physiologically based pharmacokinetic absorption modeling.

4.
J Clin Pharmacol ; 64(3): 323-333, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37909674

RESUMO

Nilotinib is a second-generation BCR-ABL tyrosine kinase inhibitor for the treatment of Philadelphia chromosome-positive chronic myeloid leukemia in both adult and pediatric patients. The pharmacokinetics (PK) of nilotinib in specific populations such as pregnant and lactating people remain poorly understood. Therefore, the objectives of the current study were to develop a physiologically based pharmacokinetic (PBPK) model to predict nilotinib PK in virtual drug-drug interaction (DDI) studies, as well as in pediatric, pregnant, and lactating populations. The nilotinib PBPK model was built in PK-Sim, which is part of the free and open-source software Open Systems Pharmacology. The observed clinical data for the validation of the nilotinib models were obtained from the literature. The model reasonably predicted nilotinib concentrations in the adult population; the DDIs between nilotinib and rifampin or ketoconazole in the adult population; and the PK in the pediatric, pregnant, and lactating populations, although in the latter 2 populations plasma concentrations were slightly underestimated. The ratio of predicted versus observed PK parameters for the adult model ranged from 0.71 to 1.11 for area under the concentration-time curve and 0.55 to 0.95 for maximum concentration. For the DDI, the predicted area under the concentration-time curve ratio and maximum concentration ratio fell within the Guest criterion. The current study demonstrated the utility of using PBPK modeling to understand the mechanistic basis of PK differences between adults and specific populations, such as pediatrics, and pregnant and lactating individuals, indicating that this technology can potentially inform or optimize dosing conditions in specific populations.


Assuntos
Lactação , Modelos Biológicos , Adulto , Feminino , Gravidez , Humanos , Criança , Simulação por Computador , Interações Medicamentosas , Pirimidinas
5.
Clin Pharmacokinet ; 63(1): 69-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37962827

RESUMO

BACKGROUND AND OBJECTIVE: Physiologically based pharmacokinetic (PBPK) models for pregnant women have recently been successfully used to predict maternal and umbilical cord pharmacokinetics (PK). Because there is very limited opportunity for conducting clinical and PK investigations for fetal drug exposure, PBPK models may provide further insights. The objectives of this study were to extend a whole-body pregnancy PBPK model by multiple compartments representing fetal organs, and to predict the PK of cefuroxime in the maternal and fetal plasma, the amniotic fluid, and several fetal organs. METHODS: To this end, a previously developed pregnancy PBPK model for cefuroxime was updated using the open-source software Open Systems Pharmacology (PK-Sim®/MoBi®). Multiple compartments were implemented to represent fetal organs including brain, heart, liver, lungs, kidneys, the gastrointestinal tract (GI), muscles, and fat tissue, as well as another compartment lumping organs and tissues not explicitly represented. RESULTS: This novel PBPK model successfully predicted cefuroxime concentrations in maternal blood, umbilical cord, amniotic fluid, and several fetal organs including heart, liver, and lungs. Further model validation with additional clinical PK data is needed to build confidence in the model. CONCLUSIONS: Being developed with an open-source software, the presented generic model can be freely re-used and tailored to address specific questions at hand, e.g., to assist the design of clinical studies in the context of drug research or to predict fetal organ concentrations of chemicals in the context of fetal health risk assessment.


Assuntos
Cefuroxima , Modelos Biológicos , Humanos , Gravidez , Feminino , Software , Líquido Amniótico , Músculos
6.
J Clin Pharmacol ; 63 Suppl 2: S85-S102, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37942904

RESUMO

An objective of the Precision Medicine Initiative, launched in 2015 by the US Food and Drug Administration and National Institutes of Health, is to optimize and individualize dosing of drugs, especially anticancer agents, with high pharmacokinetic and pharmacodynamic variability. The American Society of Clinical Oncology recently reported that 40% of obese patients receive insufficient chemotherapy doses and exposures, which may lead to reduced efficacy, and recommended pharmacokinetic studies to guide appropriate dosing in these patients. These issues will only increase in importance as the incidence of obesity in the population increases. This publication reviews the effects of obesity on (1) tumor biology, development of cancer, and antitumor response; (2) pharmacokinetics and pharmacodynamics of small-molecule anticancer drugs; and (3) pharmacokinetics and pharmacodynamics of complex anticancer drugs, such as carrier-mediated agents and biologics. These topics are not only important from a scientific research perspective but also from a drug development and regulator perspective. Thus, it is important to evaluate the effects of obesity on the pharmacokinetics and pharmacodynamics of anticancer agents in all categories of body habitus and especially in patients who are obese and morbidly obese. As the effects of obesity on the pharmacokinetics and pharmacodynamics of anticancer agents may be highly variable across drug types, the optimal dosing metric and algorithm for difference classes of drugs may be widely different. Thus, studies are needed to evaluate current and novel metrics and methods for measuring body habitus as related to optimizing the dose and reducing pharmacokinetic and pharmacodynamic variability of anticancer agents in patients who are obese and morbidly obese.


Assuntos
Antineoplásicos , Neoplasias , Obesidade Mórbida , Humanos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacocinética , Preparações Farmacêuticas , Neoplasias/tratamento farmacológico , Desenvolvimento de Medicamentos , Farmacocinética
7.
J Clin Pharmacol ; 63 Suppl 2: S10-S17, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37942907

RESUMO

The prevalence of obesity has grown tremendously in recent years and this population has an increased risk of disease comorbidities. The presence of disease comorbidities requires treatment interventions and proper dosing guidelines. However, drug development programs often do not have adequate representation of individuals who are obese in clinical trials, leaving gaps in the understanding of treatment response leading to a lack of adequate individualization options. Based on a recent survey of approved drug product package inserts, very few approved products included specific dosing based on obesity, in both adults and pediatrics. Reasons for the limited information on patients who are obese may include the under-reporting of information regarding such patients and a lack of clinical trial diversity in enrolling patient groups in whom obesity or obesity-related comorbidities are more prevalent. An inadvertent impact of the practice of exclusion of subsets of patients with some comorbidities in clinical trials may play a role in the reduced enrollment of individuals who are obese. Recently, regulatory authorities have taken specific initiatives to promote clinical trial diversity, including engaging with stakeholders and publishing regulatory guidance. These guidance documents highlight the need to enroll diverse clinical trial populations and provide recommendations on concepts related to drug development for obese populations. Such efforts will help to address the gap in information regarding drug response and dosing in patients who are obese.


Assuntos
Desenvolvimento de Medicamentos , Obesidade , Adulto , Humanos , Criança , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/epidemiologia
8.
J Clin Pharmacol ; 63 Suppl 2: S18-S24, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37942908

RESUMO

Pediatric obesity is a global public health concern. Obesity-related physiological changes may affect the pharmacokinetics of drugs and lead to therapeutic failure or toxicities. An earlier review of pediatric drug development programs from 2007 to 2016 found that, of 89 programs listing obesity-related terms, only 4 (4%) products described pharmacokinetic changes associated with obesity. This review examined obesity considerations for 185 drug products for which pediatric drug development programs were submitted to the US Food and Drug Administration (FDA) between 2016 and 2021. The FDA-authored review documents and drug product labeling were queried for obesity-related terms and the review found 97/185 (52%) drug products had obesity-related terms in these sources. Of the 97 drug products, 55/97 (57%) had obesity-related terms in the FDA-authored reviews only, 13/97 (13%) had obesity-related terms in the drug product labeling only, and 29/97 (30%) had obesity-related terms in both FDA-authored reviews and drug product labeling. Most of the obesity-related information in the drug product labeling originated from data collected from adults. Only 13/185 (7%) drug product labeling contained obesity-related terms in reference to drug pharmacokinetics. Specific dosage recommendations for the use of the drug products in pediatric patients who are obese remain lacking. The dearth of available information to guide drug dosages in the obese pediatric population suggests that further research, innovative approaches, and evidence-based guidelines are needed to inform the optimal therapeutic use of drugs in this population.


Assuntos
Desenvolvimento de Medicamentos , Obesidade Pediátrica , Adulto , Estados Unidos , Criança , Humanos , Preparações Farmacêuticas , Obesidade Pediátrica/tratamento farmacológico , Rotulagem de Medicamentos , United States Food and Drug Administration
9.
Children (Basel) ; 10(10)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37892303

RESUMO

Clinical trials are an integral aspect of drug development. Tremendous progress has been made in ensuring drug products are effective and safe for use in the intended pediatric population, but there remains a paucity of information to guide drug dosages in pediatric patients with obesity. This is concerning because obesity may influence the disposition of drug products. When pediatric patients with obesity are not enrolled in clinical trials, dosing options for use in this subpopulation may be suboptimal. Reliance on physiological-based dosing strategies that are not informed by evaluation of the pharmacokinetics of the drug product could lead to under- or over-dosing with ensuing therapeutic failure or toxicity consequences. Thus, representation of pediatric patients with obesity in clinical trials is crucial to understand the benefit-risk profile of drug products in this subpopulation. It is important to acknowledge that this is a challenging endeavor, but not one that is insurmountable. Collective efforts from multiple stakeholders including drug developers and regulators to enhance diversity in clinical trials can help fill critical gaps in knowledge related to the influence of obesity on drug disposition.

10.
Clin Transl Sci ; 16(10): 2046-2057, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37551830

RESUMO

Deriving pediatric doses for locally acting drugs (LADs) presents a unique challenge because limited systemic exposure hinders commonly used approaches such as pharmacokinetic matching to adults. This study systematically evaluated drug development practices used for pediatric dose selection of LADs approved by the U.S. Food and Drug Administration from 2002 to 2020. The three study objectives were: (1) to determine the dose selection approach for the labeled pediatric dose, (2) to examine the studied pediatric dose(s), and (3) to evaluate the characteristics of the pediatric clinical programs used to support the labeled pediatric dose. A total of 187 pediatric submissions were characterized for the labeled and studied pediatric doses of LADs. The pediatric dose was predominantly labeled as a flat dose (91%) and at a single-dose level (67%) similar to adults. The majority (68.4%) of the submissions had the same labeled dose for pediatrics and adults. Independent pharmacodynamic/efficacy studies in pediatric patients commonly (64.2%) provided supportive evidence for the labeled pediatric dose. Inhalation, nasal, and injectable submissions had the highest number of clinical trials, lowest usage of an extrapolation of efficacy approach, and utilized diverse approaches in selecting the studied pediatric doses. This article highlights approaches for LAD dosing in pediatric patients and can be used to inform drug development of these products in the pediatric population.


Assuntos
Aprovação de Drogas , Desenvolvimento de Medicamentos , Adulto , Estados Unidos , Criança , Humanos , Preparações Farmacêuticas , United States Food and Drug Administration , Relação Dose-Resposta a Droga
11.
Clin Pharmacol Ther ; 114(3): 618-622, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37422730

RESUMO

The Research Acceleration for Cure and Equity (RACE) for Children Act requires sponsors to submit a Pediatric Study Plan (PSP) with a proposed pediatric investigation of new molecularly targeted drugs and biologics that are intended for treatment of adult cancers, and whose target is relevant to pediatric cancer or provide a justification for a plan to request a deferral or waiver of the required investigation. A landscape analysis was performed to identify trends in information gaps associated with a sponsor's first initial PSP (iPSP) submission for oncologic new molecular entities received in 2021. Comments sent to sponsors by the US Food and Drug Administration (FDA) during the review process of each evaluated iPSP were categorized using nine flags relating to different portions of the PSP. For iPSPs that included a plan for a full waiver request, the most common information gap was inadequate justification based on molecular target relevance. All other sponsor proposed plans (deferral and/or partial waiver or investigation) were found to have information gaps related to clinical study features, clinical pharmacology, and/or missing clinical or nonclinical data. This landscape analysis of iPSPs shows the trends in comments that often occur during initial review and may help to provide sponsors with more direction for preparing an adequate iPSP to fulfill statutory requirements aimed at ensuring pediatric patients are considered in the development of new molecularly targeted drugs.


Assuntos
Produtos Biológicos , Neoplasias , Adulto , Humanos , Criança , Estados Unidos , Produtos Biológicos/uso terapêutico , Neoplasias/tratamento farmacológico , Oncologia , United States Food and Drug Administration
13.
AAPS J ; 25(4): 67, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386339

RESUMO

This study investigated the impact of gastro-intestinal fluid volume and bile salt (BS) concentration on the dissolution of carbamazepine (CBZ) immediate release (IR) 100 mg tablets and to integrate these in vitro biorelevant dissolution profiles into physiologically based pharmacokinetic modelling (PBPK) in pediatric and adult populations to determine the biopredictive dissolution profile. Dissolution profiles of CBZ IR tablets (100 mg) were generated in 50-900 mL biorelevant adult fasted state simulated gastric and intestinal fluid (Ad-FaSSGF and Ad-FaSSIF), also in three alternative compositions of biorelevant pediatric FaSSGF and FaSSIF medias at 200 mL. This study found that CBZ dissolution was poorly sensitive to changes in the composition of the biorelevant media, where dissimilar dissolution (F2 = 46.2) was only observed when the BS concentration was changed from 3000 to 89 µM (Ad-FaSSIF vs Ped-FaSSIF 50% 14 BS). PBPK modeling demonstrated the most predictive dissolution volume and media composition to forecast the PK was 500 mL of Ad-FaSSGF/Ad-FaSSIF media for adults and 200 mL Ped-FaSSGF/FaSSIF media for pediatrics. A virtual bioequivalence simulation was conducted by using Ad-FaSSGF and/or Ad-FaSSIF 500 mL or Ped-FaSSGF and/or Ped-FaSSIF 200 mL dissolution data for CBZ 100 mg (reference and generic test) IR product. The CBZ PBPK models showed bioequivalence of the product. This study demonstrates that the integration of biorelevant dissolution data can predict the PK profile of a poorly soluble drug in both populations. Further work using more pediatric drug products is needed to verify biorelevant dissolution data to predict the in vivo performance in pediatrics.


Assuntos
Benzodiazepinas , Medicamentos Genéricos , Humanos , Criança , Adulto , Solubilidade , Equivalência Terapêutica , Ácidos e Sais Biliares , Carbamazepina
15.
J Clin Pharmacol ; 63(1): 105-118, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35968821

RESUMO

To streamline drug development, the United States Food and Drug Administration (FDA) can consider the extrapolation of adult efficacy data to children when the disease and drug effects are sufficiently similar. This study explored whether the relationship between drug exposure and response for selected drugs in systemic lupus erythematosus (SLE) was sufficiently similar to support a consideration of the extrapolation of adult efficacy data to children of ≥5 years of age. An exposure-response analysis of drugs used to treat SLE was conducted using published exposure versus response and efficacy versus time data. Statistical analyses included noncompartmental analysis of a drug's area under the effect curve and direct Imax pharmacodynamic (PD) modeling. Six drugs were included: azathioprine, belimumab, cyclophosphamide, hydroxychloroquine, mycophenolate/mycophenolic acid, and rituximab. For belimumab, the net change in responders at week 52 (the primary end point) was nearly identical between 1 adult trial and the pediatric trial. For mycophenolate, PD modeling suggested no significant differences in exposure and SLE disease activity between adults and children. For azathioprine, cyclophosphamide, hydroxychloroquine, and rituximab the data were not sufficient to quantitatively characterize the exposure-response relationship, but the clinical or pharmacologic response between children and adults was similar overall. Adult SLE data should be leveraged to guide pediatric drug development programs and identify areas with residual uncertainty regarding the effectiveness or safety of a drug in children. The degree to which efficacy extrapolation can reduce clinical trial requirements in pediatric SLE should be individualized for each new drug product, depending in part on the mechanism of action of the drug and the similarity of disease manifestations in children and adults.


Assuntos
Azatioprina , Lúpus Eritematoso Sistêmico , Adulto , Criança , Humanos , Azatioprina/uso terapêutico , Ciclofosfamida/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Hidroxicloroquina/uso terapêutico , Imunossupressores/uso terapêutico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Rituximab/uso terapêutico , Resultado do Tratamento
16.
Clin Pharmacol Ther ; 113(5): 957-959, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36219676

RESUMO

The Research to Accelerate Cures and Equity (RACE) for Children Act requires an assessment of molecular targets relevant to pediatric cancer. Due to the biological complexity, candidate molecular targets have been primarily evaluated based on single features such as the presence of mutations or deregulated expression. As the understanding of tumor biology evolves, the relevance of certain molecular targets may need to be assessed at isoform and/or mutation variant level to optimize tailored therapeutic interventions.


Assuntos
Neoplasias , Criança , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Mutação
17.
J Clin Pharmacol ; 63(3): 307-313, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36150423

RESUMO

Pediatric extrapolation plays a key role in the availability of reliable pediatric use information in approved drug labeling. This review examined the use of pediatric extrapolation in studies submitted to the US Food and Drug Administration and assessed changes in extrapolation approaches over time. Pediatric studies of 125 drugs submitted to the US Food and Drug Administration that led to subsequent pediatric information in drug labeling between 2015 and 2020 were reviewed. The use of pediatric extrapolation for each drug was identified and categorized as "complete," "partial," or "no" extrapolation. Approaches to pediatric extrapolation of efficacy changed over time. Complete extrapolation of efficacy was the predominantly used approach. "Complete," "partial," or "no" extrapolation was used for 51%, 23%, and 26% of the drugs, respectively. This represents a shift in extrapolation approaches when compared to a previous study that evaluated pediatrics drug applications between 2009 and 2014, which found complete, partial, or no extrapolation was used for 34%, 29%, and 37% of the drugs, respectively. Pediatric extrapolation approaches may continue to shift as emerging science fills gap in knowledge of the fundamental assumptions underlying this scientific tool. The international community continues to collaborate on discussions of pediatric extrapolation of efficacy from adults and other pediatric subpopulations to optimize its use for pediatric drug development.


Assuntos
Desenvolvimento de Medicamentos , Rotulagem de Medicamentos , Adulto , Estados Unidos , Criança , Humanos , United States Food and Drug Administration , Preparações Farmacêuticas
19.
J Clin Pharmacol ; 62 Suppl 1: S12-S17, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36106789

RESUMO

Clinical pharmacology is a branch of the field of pharmacology that evolved following the recognition that the nature, duration, and intensity of drug action depend on both the intrinsic properties of the drug and an interaction with the host to whom the drug is given. Advances in drug development have placed highly specific and extremely potent therapeutic agents in the marketplace. While these advances have progressed rapidly in adult medicine, pediatric clinical pharmacology has not kept pace and until very recently has lagged behind the research and attention paid to the proper use of therapeutic and diagnostic drugs in adults. Recognition that advances in the science of developmental pharmacology and pediatric clinical pharmacology were essential in the development of new drugs to treat children came in the 1950s and 1960s mostly through the work of 2 pioneering scientists in fetal and perinatal clinical pharmacology, Drs Sumner Yaffe and Bernard Mirkin. Here we pay a tribute to these most influential pioneers in the United States who were instrumental in paving the path for advancing the field of fetal and perinatal pharmacology concepts and their incorporation into pediatric drug development programs.


Assuntos
Farmacologia Clínica , Adulto , Criança , Feminino , Humanos , Parto , Gravidez , Estados Unidos
20.
J Clin Pharmacol ; 62(8): 970-982, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35118684

RESUMO

The use of placebo concurrent control (placebo-controlled) is the most rigorous method of evaluating the safety and efficacy of investigational treatments. However, the use of a placebo group in pediatric product development can be challenging due to ethical considerations and potential differences in placebo response rates between adults and children. This study reports the US Food and Drug Administration's experience with placebo response rates in the pediatric population. Products studied under the Best Pharmaceuticals for Children Act and the Pediatric Research Equity Act between 2012 and 2020 were screened. Study characteristics including study type, primary efficacy endpoint(s), placebo response rates for the primary efficacy endpoint(s) and studied age range were collected. A total of 71 drug products used a placebo-controlled trial. Of these, thirteen products had an identical study design and trial characteristics including the primary efficacy endpoints between pediatric and adult studies. Fifteen products were studied in trials with identical study design but only different primary efficacy endpoints in pediatric and adult populations. Ten products had combined adolescent and adult trials with separate pediatric trials in younger age groups. In each of these cases, the pediatric placebo response was greater, for some trials, and less, for other trials, than the adult placebo response. The pediatric placebo response can vary within an age group for a drug product. Future studies should examine the factors leading to a similarity or dissimilarity in placebo response between pediatric patients and adults.


Assuntos
Efeito Placebo , Projetos de Pesquisa , Adolescente , Adulto , Criança , Previsões , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Estados Unidos , United States Food and Drug Administration
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...